
The ROMIO-HDF5 Interplay

Rob Latham

robl@mcs.anl.gov

Mathematics and Computer Science Division

Argonne National Laboratory

mailto:robl@mcs.anl.gov

2

MPI-IO: Maybe not as broken as believed?

 Wei-keng Liao, Northwestern University, SC2009

– More detail later

0

2,000

4,000

6,000

8,000

10,000

16 32 64 128 256 512 1024

M
B
/s
ec

MPI processes

FLASH I/O on Lustre

even

group-cyclic

3

Application

File System

I/O Hardware

Background: Software for Parallel I/O in HPC

 Applications require more software than just a parallel file system

 Support provided via multiple layers with distinct roles:

– Parallel file system maintains logical space, provides efficient access to

data (e.g. PVFS, GPFS, Lustre)

– I/O Forwarding found on largest systems to assist with I/O scalability

– Middleware layer deals with organizing access by many processes

(e.g. MPI-IO, UPC-IO)

– High level I/O library maps app. abstractions to a structured,

portable file format (e.g. HDF5, Parallel netCDF)

 Goals: scalability, parallelism (high bandwidth), and usability

High-level I/O Library

I/O Middleware (MPI-IO)

Parallel File System

I/O Hardware

Application

I/O Forwarding

4

Independent and Collective I/O

 Independent I/O operations specify only what a single process will do

– Independent I/O calls do not pass on relationships between I/O on other processes

 Many applications have phases of computation and I/O

– During I/O phases, all processes read/write data

– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions are called by all processes participating in I/O

– Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

5

Collective I/O and Two-Phase I/O

 Problems with independent, noncontiguous access

– Lots of small accesses

– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks

– Single processes use data sieving to get data for many

– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations

 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

 Note that two-phase is usually applied to file regions, not to actual blocks

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/OInitial State Phase 2: Redistribution

6

Common Functionality

ADIO Interface

UFS

MPI-IO Interface

NFS XFSPVFS

ROMIO’s layered architecture.

ROMIO MPI-IO Implementation

 Developed at Argonne National Laboratory

– Leverages MPI-1 communication

– Supports local file systems, network file systems,

parallel file systems

• UFS module works for GPFS, Lustre, and others

• Tuned modules for PVFS, BlueGene. Lustre in development

– Includes data sieving and two-phase optimizations

 Basis for several vendor implementations

– IBM BlueGene/L, BlueGene/P

– Cray XT3/XT4/XT5

– MPICH2

– OpenMPI

ROMIO improvements: #1 – Flexible redistribution

 Wei-keng Liao: SC 2008

 New two-phase (ADIO-level) decompositions:

– Even Alignment: file system lock boundaries

• Best for GPFS

– Static-cyclic: distribute relative to I/O servers

• Interacts poorly with readahead

– Group-cyclic: grouping based on I/O servers, distribute among group

• Best for Lustre writes

7

0

2,000

4,000

6,000

8,000

10,000
M
B
/s
ec

MPI processes

FLASH I/O on Lustre

even

group-cyclic

8

ROMIO Improvements: #2 – File-system specific tuning

 Weikuan Yu (Oak Ridge), Emoly Liu (Sun): Lustre-specific driver for

ROMIO

– Thresholds for disabling collective I/O

– Thresholds for disabling data sieving

– New hints (MPI-IO tuning parameters)

– Lustre-specific ioctl() commands

Time to write checkpoint: Smaller is better.

9

ROMIO Improvements: #3 – Site-specific hints

 MPI Info parameters

– Flexible: string-based keyword-value pairs

– Portable: implementations free to ignore hints they don’t understand

– Rarely used

 MPICH2-1.0.7: ROMIO can read hints from config file

– /etc/romio-hints or ROMIO_HINTS env var

– E.g. good place for Lustre-specific knobs

HDF5 and MPI-IO

 Good: trust MPI-IO library

– It’s usually ROMIO

– Describe I/O with MPI datatypes

– Use file format layout information

– Use collective I/O

 Bad:

– Filesystem-specific optimizations

• Yes, I know there are a few in there already

– System-specific optimizations

• Better served in MPI-IO layer

– Reinventing anything MPI-IO folks already did

10

Research vs. Production

 False, of course

 Argonne, Northwestern University, Oak Ridge, others continue to

develop, refine ROMIO

 Vendors incorporate research... at varying rates

 Good: IBM and BGP

– ANL developed PVFS enhancements

– IBM incorporates into production driver; installed 3 months later

 Bad: Cray and XT

– As of summer 2008, Franklin's MPI-IO based on MPICH2-1.0.4

– MPICH2-1.0.4 released August, 2006

“Best” way to get ROMIO research onto production machines?

11

“System software research is irrelevant” - Rob Pike, 2000

